
MFPS 2018

Factorisation systems for logical relations and monadic lifting in
type-and-effect system semantics

Ohad Kammar1

Department of Computer Science
University of Oxford

Oxford, England

Dylan McDermott2

Computer Laboratory
University of Cambridge

Cambridge, England

Abstract

Type-and-effect systems incorporate information about the computational effects, e.g., state mutation, probabilistic choice, or
I/O, a program phrase may invoke alongside its return value. A semantics for type-and-effect systems involves a parameterised
family of monads whose size is exponential in the number of effects. We derive such refined semantics from a single monad over
a category, a choice of algebraic operations for this monad, and a suitable factorisation system over this category. We relate the
derived semantics to the original semantics using fibrations for logical relations. Our proof uses a folklore technique for lifting
monads with operations.

Keywords: computational effects, type-and-effect systems, monads, factorisation systems, fibrations, logical relations,
denotational semantics

1 Introduction

Consider the following program phrase in an imperative-functional ml-like language:

1 l et ( t r i p l e : un i t→ i n t ) = λ : un i t . 3∗( get ` )
2 in ` := 1 ;
3 ` := t r i p l e ( ) + t r i p l e ( )

The locally-defined function triple :unit→int triples the value read from memory location `. The phrase then
triples this value twice, and mutates the state to the sum of these two results. When optimising the program,
we would like to cache the call to triple , and replace line 3 with a single memory access:

3 ` := l et y = t r i p l e ( ) in y + y

This transformation only preserves the semantics because the computational effects triple invokes are limited
to reading. If we replace instead its definition on line 1 with a function that increments location `′ with each
invocation of triple then the caching optimisation is no longer semantics preserving:

1 Email: ohad.kammar@cs.ox.ac.uk
2 Email: dylan.mcdermott@cl.cam.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ohad.kammar@cs.ox.ac.uk
mailto:dylan.mcdermott@cl.cam.ac.uk


Kammar and McDermott

1 l et ( t r i p l e : un i t→ i n t ) = λ : un i t . `′ := (1 + get `′ ) ; 3∗( get ` )

Type-and-effect systems [21] refine types, such as triple :unit→int, to propagate the information about which
computational effects code pieces may invoke, e.g., decorating function types with additional effect annotations:

t r i p l e : un i t
ε−→ i n t

In Gifford-style systems, these annotations are finite sets of effect operations, such as ε := {get, set}. For

example, for every proper subset ε ⊂ {get, set}, the caching transformation for every function f : A
ε−→ B is

semantics preserving, while for ε = {get, set} it is not.
Adequate denotational semantics is a natural technique for validating such equational transformations, and

there is a long line of work validating type-and-effect-dependent transformations, starting with independent
results by Tolmach [31], Wadler [32], and Benton et al. [3], and continuing to this day [2]. In their most general
form, the semantics of an effect system consists of a graded monad [15], a compatible family of monad-like
structures Tε indexed by the effect annotations ε.

Here we make two contributions:
Contribution 1: avoiding structural combinatorial blow-up. To give the model structure for an arbi-
trary Gifford-style type-and-effect system with n operation symbols, one would need to give the structure of
2n different monad-like structures, n2n−1 monad-like-morphisms, and commute more than the same amount
of diagrams to discharge the relevant proof obligations. To circumvent this blow-up, for example, Benton et al.
give uniform bespoke definitions for each Tε, e.g., as in [2]. To avoid an ad-hoc definition for each collection
of effects, Katsumata [15] constructs graded monads for Gifford-style systems when the effects in the language
are free. Here we give a general construction for Gifford-style systems whose effects are given by a set of Kleisli
arrows for an arbitrary monad over a category with a factorisation system with appropriate closure properties,
providing a uniform construction even when the effects of interest are not free.
Contribution 2: relationship to a base semantics. We also show that this construction gives sound and
complete reasoning principles with respect to the original semantics under additional assumptions. As usual,
such proofs involve constructing a logical relation. Here, we work fibrationally using Katsumata’s notion of a
fibration for logical relations [14]. We extend Hughes and Jacobs’s characterisation of fibrations arising from
factorisation systems [7] and characterise the factorisation systems that correspond to fibrations for logical
relations. Finally, we also define generally a monadic lifting for an arbitrary monad along a fibration for logical
relations that also lifts a given collection of Kleisli arrows. This construction utilises the bijection between
algebraic operations and generic effects [26]. While Kammar [10] describes it in the special set-theoretic case, we
believe this folklore monadic lifting methodology 3 should be known in its greater generality. We demonstrate
that our results are applicable in several cases of interest.

These two contributions substantially generalise Kammar and Plotkin’s previous domain-theoretic [11] and
set-theoretic constructions [10]. Our factorisation system construction also strictly generalises the one in Kam-
mar’s thesis [10], which is limited to factorisation of enriched Lawvere theories [29] over a locally presentable
category. The development here is also substantially simpler than Kammar’s thesis. This simplification occurs
in two levels. Kammar’s previous development requires a combinatorial solution set condition argument using
Bousfield’s factorisation theorem [4], while our factorisation construction is structural and elementary. Second,
our proofs are straightforward in comparison.

The rest of the paper is structured as follows. Section 2 presents our main factorisation construction.
Section 3 uses this construction to give semantics for a type-and-effect system for Moggi’s computational λ-
calculus. Section 4 instruments a logical relations soundness and completeness proof from the factorisation
construction. Section 5 surveys example applications of our construction. Section 6 concludes.

2 Factorising monads

To present our main construction, we first review the relevant category theoretic concepts and results.

2.1 Preliminaries and terminology

We assume familiarity with category theory, including categories C, D, functors F,G : C → D, and natural
transformations α, β : F → G, and related concepts as found in textbooks such as Mac Lane’s [22].

2.1.1 Factorisation systems
A factorisation system axiomatises the set-theoretic situation in which every function f : A → B can be
factorised as f = m ◦ e, i.e., a surjection e : A � f [A] onto the image of f , followed by the injection

3 Alex K. Simpson, private communication, 2015.

2



Kammar and McDermott

m : f [A] � B of this image into f ’s codomain. In the general situation, we have two classes of morphisms
(E ,M) over a category C, where E-morphisms are thought of as epimorphisms andM-morphisms are thought
of as monomorphisms. We adopt the common convention to reserve the notation e : A� B for an E-morphism
and m : B � C for an M-morphism when E and M are clear from the context, but emphasise that neither
class needs to consist of epis or monos.

Definition 2.1 An (orthogonal) factorisation system on a category C is a pair (E ,M) consisting of two classes
of morphisms of C such that:

• Both E and M are closed under composition, and contain all isomorphisms.

• Every morphism f : X → Y in C factors into f = m ◦ e for some m ∈M and e ∈ E .

• The diagonal fill-in property is satisfied: for each commutative square as on the left, with m ∈M and e ∈ E
there is a unique morphism h : X → Y such that h ◦ e = f and m ◦ h = g, as on the right:

W X

Y Z

e

f g=

m

=⇒
W X

Y Z

e

f gh

m

=

=

Under the first two axioms, the diagonal fill-in axiom is equivalent to a form of functoriality in factorisation,
as in the following diagram:

X Y

X ′ Y ′

f

g1 g2

f ′

= =⇒
X A Y

X ′ A′ Y ′

e

g1 =

m

h g2

e′ m′

=

In addition, it implies that factorisations of morphisms are unique up to a unique canonical iso, and so we talk
about the factorisation of a morphism.

Example 2.2 The category Set has (surjection, injection) as a factorisation system, i.e., E is the class of
surjective functions and M is the class of injective functions.

Example 2.3 [Meseguer [24]] Consider the category ωCpo of partial orders possessing all least upper bounds
(lubs) of ω-indexed monotone sequences (ω-chains), i.e., ω-cpos, and monotone functions between them pre-
serving these lubs, i.e., Scott-continuous functions. A dense function is a continuous function e : X � Y such
that the smallest ω-chain-closed subset U ⊆ Y with e[X] ⊆ U is Y itself, i.e., a Scott-continuous function with
a dense image. A full function is a continuous function m : X � Y such that mx ≤ mx′ implies x ≤ x′ for
each x ∈ X. The category ωCpo has (dense, full) as a factorisation system. The full functions form a proper
subclass of the monos, and the dense functions form a proper subclass of the epis [20].

Example 2.4 Consider the functor category [W, C], for a small category W and any category C, and let
(E ,M) be a factorisation system on C. Take E ′ (respectively M′) as the class of natural transformations that
are component-wise in E (respectively M). Then (E ′,M′) is a factorisation system for [W, C].

The left and right classes in a factorisation system have useful closure properties. For example, if g ◦ f and
f are in E , then so is g. For another example, view both classes as full subcategories of the arrow category

C→ whose objects are triples f = (Af1 , A
f
2 , f) consisting of a morphism f : Af1 → Af2 , and whose morphisms

h : f → g are pairs (h1, h2) consisting of morphisms hi : Afi → Agi making the evident square commute. Then
the left class is closed under colimits in the arrow category, and similarly the right class is closed under limits.

2.1.2 Monad structures and monads
The main feature of our factorisation construction is its modularity. First, factorisation takes place on a purely
structural level, and we do not need any semantic properties such as the monad laws. Second, factorisation
takes place on a pay-as-you-go basis, factorising any additional data the morphism of interest preserves. To
describe it explicitly, we first describe precisely the structures we will factorise.

A monad structure T on a category C consists of a triple
(
T , returnT , µT

)
where:

• the functor part T assigns to every C-object A another C-object TA, and to every C-morphism f : A → B
another C-morphism Tf : TA→ TB;

• the unit returnT assigns to every C-object A a C-morphism returnTA : A→ TA; and

• the multiplication µT assigns to every C-object A a C-morphism µTA : T 2A→ TA.

3



Kammar and McDermott

A monad is thus a monad structure T satisfying the well-known monad laws [22, Section 7.1]. When C has
finite products, a strong monad structure is a monad structure T with an additional structure component:

• the strength strT assigns to every pair of C-objects A and B a C-morphism strTA,B : A× TB → T (A×B).

A strong monad [19] is thus a strong monad structure satisfying the well-known laws. We similarly define Kleisli
triple structures T =

(
T , returnT , >>=T

)
, demanding only an assignment T on objects, morphisms returnTA : A→

TA, and a Kleisli extension >>=TA,B f : TA→ TB for every f : A→ TB. Finally, when C is cartesian closed, we

define a strong Kleisli triple structure T =
(
T , returnT , >>=T

)
analogously, replacing >>= with an assignment of a

morphism >>=TA,B : TA × TBA → TB for every pair of C-objects A and B. This more general Kleisli extension

induces morphisms strTA,B : A× TB → T (A×B). (Strong) Kleisli triples are (strong) Kleisli triple structures
satisfying additional laws.

Morphisms m : S → T of the above structures are natural transformations m : S → T that preserve
the structure, i.e. satisfy the same conditions a (strong) monad morphism should. Such morphisms provide
categories of (strong) monad structures and of (strong) Kleisli triple structures. They also provide the subcat-
egories of (strong) monads and of (strong) Kleisli triples. There are isomorphisms between the categories of
(strong) monads and (strong) Kleisli triples. The monad laws are necessary to establish this: the isomorphisms
fail to extend to isomorphisms between the structure categories.

An algebra structure A = (A, algA) for a monad structure T over C consists of:

• the carrier A, a C-object; and

• the algebra map algA, a C-morphism algA : TA→ A.

When T is a monad, an algebra is an algebra structure satisfying the well-known algebra properties [22, Section
7.2]. Similarly, when T is a Kleisli triple structure, an algebra structure A = (A, >>=A) replaces the algebra map
with:

• the extension operator >>=A which assigns to every morphism f : X → A a morphism >>= f : TX → A.

When T is a Kleisli triple, an algebra is an algebra structure satisfying [23], for every f : X → A, and every
g : X → TY , h : Y → A:

X TX

A

return

f
>>=f

=
TX TY

A

>>=g

>>=A((>>=Ah)◦g)
>>=h

=

Similarly, we define an algebra structure for a strong Kleisli triple structure by replacing the extension operator
with an internal extension operator >>=: TX × AX → A, and algebras for a strong Kleisli triple internalise the
two equations above.

Let T be a monad over a category C. Recall that a Kleisli arrow is a morphism f : A → TB. When
C is cartesian closed and T is strong, an algebraic operation [26] α : A → B for T assigns to every C-object
X a C-morphism αX : (TX)B → (TX)A, natural in X, and respecting the multiplication/extension and the
strength. Plotkin and Power [26] establish a bijection between Kleisli arrows f : A → TB and algebraic
operations α : A→ B given by:

uncurryαX : A× (TX)B
f×id−−−→ TB × (TX)B

>>=−→ TX

Let F : C → C be a functor with a tensorial strength strF over a category with finite products. The category
F -MndC of F -monads on C has as objects (T, β) where T is a strong monad and β : F ◦ T → T is a natural
transformation making the square on the left commute:

X × F (TY ) F (X × TY ) F (T (X × Y ))

X × TY T (X × Y )

strF

id×β =

F strT

β

strT

F (TX) F (T ′X)

TX T ′X

Fm

β = β′

m

A morphism m : (T, β) → (T ′, β′) consists of a strong monad morphism m : T → T ′ making the square on
above right commute.

An effect signature ε in a category C consists of a set ε of operations and an ε-indexed family of pairs of

4



Kammar and McDermott

C-objects. We write (op : X → Y ) ∈ ε when op ∈ ε and (X,Y ) is the op-th component in ε. Here X is thought
of as the input to the operation, and Y as the output. We write ε ⊆ ε′ when ε is a subset of ε′ and both agree
component-wise.

For every effect signature ε we define the functor Fε : C → C by Fε :=
∑

(op:X→Y )∈εX × (−)
Y

. Every

Fε -MndC-object (T, β) induces an algebraic operation αop for each operation (op : X → Y ) ∈ ε, which in turn

induces a Kleisli arrow (T, β) ⟦op⟧ : X → TY . This process extends to an isomorphism between Fε -MndC

and the category whose objects are ε-monads on C, i.e., pairs (T, ⟦−⟧) consisting of a strong monad T together
with a morphism ⟦op⟧ : X → T Y for each (op : X → Y ) ∈ ε. Its morphisms m : (T, ⟦−⟧) → (

T ′, ⟦−⟧′) are

strong monad morphisms m : T → T ′ such that, for all (op : X → Y ) ∈ ε, we have m ◦ ⟦op⟧ = ⟦op⟧′.
2.2 The factorisation theorems

Let (E ,M) be a factorisation system for a category C, and let S be a monad structure on C. We say that
(E ,M) is closed under S when, for every e : A� B in E , we have Se : SA� SB in E . We also say that S is
compatible with (E ,M). In that case, we can factorise every monad structure morphism m : S → T through
a monad structure m[S] as a composition of monad structure morphisms m : S � m[S] � T by choosing a
factorisation for each mX , setting for each f : X → Y , and Z:

SX TX

m[S]X

mX

me
X mm

x

B

SX m[S]X

SY TX

m[S]Y TY

me
X

Sf mm
X

m[S]f

me
Y Tf

mm
Y

=

=

Z m[S]Z

SZ

return
m[S]
Z

returnS
Z me

Z

B

S2Z Sm[S]Z m[S]
2
Z

SZ m[S]TZ

T 2Z

m[S]Z TZ

Sme
Z

µS
Z

me
m[S]Z

mm
Z

µ
m[S]
Z

me
Z

m[S]mm
Z

µT
Z

mm
Z

=

=

This definition makes me : S � m[S] a monad structure morphism with components in E , and mm : m[S]� T
a monad structure morphism with components inM. Using the factorisation system closure properties, (E ,M)
is also closed under m[S]. Moreover, we have a (component-wise E , component-wiseM) factorisation system of
the category of (E ,M)-compatible monad structures and monad structure morphisms. Every algebra structure
A for m[S] induces an algebra structure S by setting:

algTA : SA
me

A−−→→ m[S]A
algA−−−→ A

When C has finite products, we say that the factorisation system (E ,M) is closed under products when, for
every e1, e2 ∈ E, we also have that e1 × e2 ∈ E . We can then factorise a strong monad structure morphism
m : S → T by setting the strength for m[S] as on the left:

X × SY X ×m[S]Y

S(X × Y ) X × TY

m[S](X × Y ) T (X × Y )

id×me
Y

strSX,Y id×mm
Y

str
m[S]
X,Y

me
X×Y strTX,Y

mm
X×Y

=

=

SX ×
(
m[S]Y

)X
m[S]X ×

(
m[S]Y

)X

TX × (TY )
X

m[S]Y TY

me
X×id

>>=S

mm
X×(m

m
Y )X

>>=m[S]

>>=T

mm
Y

=

=

We also include the factorisation construction for strong Kleisli triples in a cartesian closed category, above on
the right. This construction uses the fact that algebra structures for m[S] induce algebra structures for S.

Theorem 2.5 (Factorisation) Let C be a category, (E ,M) a factorisation system, S and T be monads over
C, and m : S → T a monad morphism.

• If (E ,M) is closed under S then m[S] is a monad, and me and mm are monad morphisms. As a consequence,
every algebra for m[S] induces an algebra for S.

5



Kammar and McDermott

• If, moreover, (E ,M) is closed under products, S and T are strong monads, and m is a strong monad
morphism, then m[S] is a strong monad and me and mm are strong monad morphisms.

• When, moreover, C is cartesian closed, the constructions for strong Kleisli triples and strong monads coincide.

The proof, commuting several diagrams, uses the diagonal fill-in property by substituting definitions.
We can transfer additional structure from S to m[S]. Post-composing with me transfers to m[S] any Kleisli

arrow for S. Let F : C → C be a strong functor and assume (E ,M) is closed under F . If (S, β) and (T, β′)

are objects of F -MndC and m is a F -MndC-morphism we equip m[S] with a F -MndC-object structure

(m[S],m[β]) by setting as below on the left. We then have that me and mm are F -MndC-morphisms.

FSX Fm[S]X

SX FTX

m[S]X TX

Fmm
X

βX Fmm
X

m[β]

me
X β′X

mm
X

=

=

S T

S′ T ′

m

f1 f2

m′

= =⇒

S m[S] T

S′ m[S′] T ′

f1 = m[f ] f2=

Using the diagonal fill-in property, we can functorially factorise commuting squares of monad structure mor-
phisms, i.e., morphisms f = (f1, f2) between monad structure morphisms, as above on the right.

Theorem 2.6 (Functoriality) Let (E ,M) be a factorisation system for a category C, and let f : (S, T,m)→
(S′, T ′,m′) be a commuting square of monad structure morphisms. If (E ,M) is closed under S and S′, then
m[f ] : m[S]→ m[S′] is a monad structure morphism that preserves all of the above structure that f preserves:

• if (E ,M) is closed under products and f is strong, then so is m[f ]; and

• if moreover f is an F -monad structure morphism, then m[f ] is an F -monad structure morphism.

So far, we have worked with an arbitrary factorisation system (E ,M). When it is an epi-mono factorisation
system, i.e., a pair (E ,M) in whichM consists of monos, then Theorem 2.5 holds under the weaker assumption
that T is a monad, while S need only be a monad structure. To prove it, instead of appealing to the diagonal
fill-in property, use the cancellation property of monos.

2.3 Free monads

To apply the Factorisation Theorem 2.5, we need to choose a suitable monad S and monad morphism m. When
giving semantics to type-and-effect systems, we take S to be the free monad for the functor Fε.

We recall Kelly’s [17,18] transfinite construction of the free F -monad when C has κ-directed colimits and
F is an arbitrary functor that is κ-ranked, i.e., preserves these colimits, for some regular cardinal κ. Define an
ordinal-indexed sequence of functors Sα : C → C by transfinite induction on α as follows:

S0 B Id Sα+1 B Id + F ◦ Sα Sλ B colim
α<λ

Sα (λ a limit ordinal)

Each colimit is directed: the diagram includes morphisms Sα → Sα′ for α ≤ α′; these morphisms are defined
by transfinite recursion. The free monad SF for F then has underlying endofunctor SF B colimα<κ Sα. If F

is also strong then SF is the initial object of F -MndC .
To apply the factorisation theorem, we need the free monad to be compatible with the factorisation system.

We give a sufficient condition on F for compatibility.

Lemma 2.7 Let C be a category with κ-directed colimits, κ a regular cardinal, F : C → C be a κ-ranked
functor, and (E ,M) a factorisation system over C. If F is compatible with (E ,M), then the free F -monad SF
is compatible with (E ,M).

To apply the last lemma to the signature functor Fε, we want to show that Fε preserves κ-directed colimits
for some κ, and that E is closed under Fε. For colimit preservation, the following lemma covers our examples.

Lemma 2.8 Let ε be an effect signature in a locally presentable cartesian closed category C. Then the functor
Fε preserves κ-directed colimits for some regular cardinal κ.

However, some Fε may be incompatible with some factorisation systems, since exponentials might not
preserve E-morphisms:

6



Kammar and McDermott

(c : A) ∈ K
Γ `∅ c : A

Γ `ε M : A (op : A→ B) ∈ Σ

Γ `ε∪{op} opM : B

Γ `ε M : A ε ⊆ ε′

Γ `ε′ M : A

(x : A) ∈ Γ

Γ `∅ x : A Γ `∅ () : A

Γ `ε M : A Γ `ε′ N : B

Γ `ε∪ε′ (M,N) : A×B
Γ `ε M : A×B
Γ `ε fstM : A

Γ `ε M : A×B
Γ `ε sndM : B

Γ `ε M : 0

Γ `ε elim0M : A

Γ `ε M : A

Γ `ε inlM : A+B

Γ `ε M : B

Γ `ε inrM : A+B

Γ `ε M : A1 +A2 Γ, x : A1 `ε′ N1 : B Γ, y : A2 `ε′ N2 : B

Γ `ε∪ε′ match M with {inlx.N1, inr y.N2} : B

Γ, x : A `ε M : B

Γ `∅ λx.M : A
ε−→ B

Γ `ε M : A
ε′′−→ B Γ `ε′ N : A

Γ `ε∪ε′∪ε′′ M N : B

Fig. 1. λc type-and-effect system

Example 2.9 Consider the (dense, full) factorisation system on ωCpo. Exponentials (−)
Y

preserve dense
maps iff Y is a countable discrete ω-cpo. For a simple illustration, take the discrete natural numbers N and
the ordinal ω + 1. Take Y := ω + 1, and consider the inclusion e : N → ω + 1, which is a dense map. Every
monotone function f : ω + 1 → N is constant, and so the ω-chain-closure of eY [NY ] contains only constant
functions. Therefore, the identity function x := id ∈ (ω + 1)Y is not in this closure, hence eY isn’t dense.

3 Type-and-effect systems

We consider a variant of Moggi’s [25] computational λ-calculus, λc, and its refinement with a Gifford-style
type-and-effect system. The denotational semantics for such a system is standard, and we focus on the specific
model structure given by the Factorisation Theorem 2.5.

3.1 Syntax

The syntax of λc is parametrised by three sets: a set B of base types ranged over by b; a set Σ of operations
ranged over by op; and a set K of constants ranged over by c. The metavariable x ranges over some set of
variables and ε ranges over finite subsets of Σ. The syntax of types A,B (base types, products and sums, and
function types), ground types G, and terms M of the λc-calculus is given as follows:

A,B ::= b | 1 | A ×B | 0 | A +B | A ε−→ B

G ::= b | 1 | G1 ×G2 | 0 | G1 +G2

M,N ::= c | opM | x | () | (M,N) | fstM | sndM | elim0M | inlM | inrM
| match M with {inlx.N1, inr y.N2} | λx.M | M N

The main difference to Moggi’s calculus is that we include a specified set of constructs opM for causing
effects. The other constructs are standard: built-in constants, unit value, products with projections, empty
type elimination construct, sum injections and pattern matching, and function abstraction and application.

To define λc’s type system, we need some typing information for effect operations and the constants.
Formally, a λc signature is a triple (B,Σ,K) consisting of: a set B of base types; a family of pairs of ground
type Σ indexed by a set of operations Σ; and a family of types K indexed by a set of constants K. We write
c : A when the type A is the c-component of K, and op : G→ G′ when (G,G′) is the op-component of Σ.

Given a λc signature we define two type systems. The type-and-effect system consists of a typing judgment
Γ `ε M : A given inductively by the rules in Figure 1. Such judgments assert that in typing context Γ, a
finitely supported partial function from variable names to types, the term M has type A and uses only the
operations in ε ⊆ Σ. The rules are standard for such systems.

We recover the usual type system for λc by erasing the effect annotations ε from the type syntax and from
Figure 1. In detail, for each type A there is an erased type A, and similarly for contexts Γ. The unrefined
typing judgments Γ `M : A are generated by the rules of Figure 1 without annotations. This judgment places
no constraints on the operations that M can use. We have that if Γ `ε M : A then Γ `M : A.

7



Kammar and McDermott

3.2 Semantics

Fix a λc signature (B,Σ,K). Recall that a bicartesian closed category is a cartesian closed category with
finite coproducts. Given a bicartesian closed category C and an object ⟦b⟧ ∈ C for each b ∈ B, we can define
the interpretation ⟦G⟧ of each ground type G in the usual way, and interpret each ε ⊆ Σ with operations
op : G→ G′ as an effect signature ⟦ε⟧ with operations op : ⟦G⟧→ ⟦G′⟧.

An unrefined λc model consists of: a bicartesian closed category C; an object ⟦b⟧ ∈ C for each b ∈ B; a
⟦Σ⟧-monad T on C (recall the definition of ε-monad from Section 2.1.2); and a morphism ⟦c⟧ : 1 → ⟦A⟧ for
each constant (c : A) ∈ K. Unrefined models interpret the unrefined judgments Γ ` M : A, with types and
contexts denoting C-objects ⟦B⟧ and ⟦Γ⟧, and judgments denoting Kleisli arrows ⟦Γ `M : A⟧ : ⟦Γ⟧→ T ⟦A⟧.

To interpret type-and-effect judgments in their greatest generality, one replaces the monad with a graded
monad [15]. Here, as we restrict to Gifford-style systems (so graded by the preordered monoid (P Σ,⊆,∪, ∅)),
we consider a simpler structure. A refined λc model consists of: a bicartesian closed category C; an object
⟦b⟧ ∈ C for each b ∈ B; a functorial assignment T−, to each ε ⊆ Σ, of an ⟦ε⟧-monad Tε on C, and to each
inclusion ε ⊆ ε′ an ⟦ε⟧-monad morphism Tε → Tε′ ; and a morphism ⟦c⟧ : 1→ ⟦A⟧ for each constant (c : A) ∈ K.

Function types are interpreted as ⟦A ε−→ B⟧ B ⟦A⟧⇒ Tε ⟦B⟧. We interpret the refined judgment Γ `ε M : A

by a morphism ⟦Γ⟧→ Tε ⟦A⟧ along the same lines of the unrefined semantics.
The only difference between the two model structures is the functorial assignment T−, which requires

additional structure over the unrefined model structure that is exponential in the number of operations. We
can derive it in the following way and under the following assumptions, in addition to the unrefined model
structure. First, we assume that, for each ε ⊆ Σ, we have the free ⟦ε⟧-monad Sε. Second, we assume a
factorisation system (E ,M) that is closed under products and each Sε. By Lemmata 2.7 and 2.8 these two
assumptions hold in any locally presentable cartesian closed category in which E is closed under exponentiation
by the interpretation of base types. Third, we assume a ⟦Σ⟧-monad T . By initiality of Sε, we have a unique
monad morphism mε : Sε → T for every ε ⊆ Σ. Applying the Factorisation Theorem 2.5 to this monad
morphism, we set Tε := mε[Sε]. Applying the functorial action of mε[−] to the (unique) ⟦ε⟧-monad morphism
Sε⊆ε′ : Sε → Sε′ , we set Tε⊆ε′ := mε[Sε⊆ε′ ] : Tε � Tε′ . Finally, we assume a refined interpretation of the
built-in constants compatible with this structure.

3.3 Example reasoning

We demonstrate the model construction on a small set-theoretic example. Let L be a finite set of global memory
location names. For our λc signature, we take: B := {loc, int}, Σ := {get : loc → int, set : loc × int → 1}, and

K := {+ : int × int
∅−→ int} ∪ {` : loc|` ∈ L} ∪ {a : int|a ∈ Z}

For the unrefined model structure, we interpret: ⟦loc⟧ := L and ⟦int⟧ := Z. For our monad, we set S := ZL

and take T to be the S-state monad, TX := (S × X)S, with the usual interpretation for get and set. We
interpret locations and integers as themselves, and + as addition without side effects.

For the refined model, we take the (surjection, injection) factorisation system on Set. We can calculate
that T{set}X = (1 + Z)L ×X is the writer monad for the following overwriting monoid

(
(1 + Z)L,1, ∗

)
:

1 := (ι1?)`∈L

(
(a`)`∈L ∗ (b`)`∈L

)
`′

=

{
b`′ b`′ 6= ι1?

a`′ otherwise

I.e., an injected unit value at location ` represents no state change, while an injected integer a represents an
update of that location to a. To see why, first note that the free {set}-monad is the smallest set satisfying
S{set}X ∼= X + L× Z× S{set}X. The unique {set}-monad morphism m{set} : S{set} → T satisfies:

m{set}(ι1x) := λs. (s, x) m{set}(ι2 (`, a, r)) := λs.
(
s[` 7→ a],m{set}(r)

)
Factorising it, and using the finiteness of L, we get the surjection:

me
{set}(ι1x) 7→ (ι1?, x) me

{set}(ι2 (`, a, r)) 7→ (((ι1?)`′∈L [` 7→ ι2a] ∗ (−))× id)
(
m{set}(r)

)
We then interpret + as addition, as T∅ is the identity monad. We can then validate the example from the
introduction, i.e. in the refined semantics ⟦M +M⟧ = ⟦(λx.x+ x)M⟧ for every Γ `{set} M : int.

8



Kammar and McDermott

4 Monadic lifting

To prove that the refined factorisation semantics matches the unrefined semantics we use a suitable notion of
logical relation. In this section we define a notion of factorisation system for logical relations, and show that
these systems induce a suitable logical relation. This notion combines Hughes and Jacobs’s [7] characterisation
of fibrations arising from factorisation systems with Katsumata’s [14] fibrations for logical relations. We then
describe the free lifting of monads to logical relations, and use this to prove the completeness of the refined
semantics (Theorem 4.12).

4.1 Preliminaries

First we review some standard properties of fibrations, see Jacobs [8] for a systematic development of fibred
category theory in type theory and logic. Instead of considering general fibrations, we will only consider the
simpler case of faithful fibrations.

Let p : D → C be a faithful functor. For all D-objects X, Y , we write f : X .−→ Y when f : pX → p Y in C
and there is some (necessarily unique) ḟ : X → Y such that p ḟ = f . In this case we say that f lifts to ḟ . If

f : X .−→ Y then ḟ is Cartesian when, for all objects Z ∈ D and g : pZ → pX with f ◦ g : Z .−→ X we have
g : Z .−→ X. The functor p is a fibration when, for every object Y in D and morphism f : I → p Y in C there is
an object X such that pX = I and f : X .−→ Y is Cartesian.

If p : D → C is a faithful fibration, we view objects X ∈ D as predicates over pX, and morphisms ḟ : X → Y
as truth-preserving maps. If f : pX → p Y then f : X .−→ Y means f is truth-preserving, and ḟ is a witness to
this preservation. Faithfulness implies that ḟ is unique, so constructing such witnesses amounts to checking a
property, instead of providing structure. The property of being Cartesian intuitively means that X is true on
as many elements of pX as possible, with the constraint that f is truth-preserving.

For every I ∈ C, the fibre DI is the category consisting of objects X ∈ D such that pX = I and morphisms
f : X → Y in D such that p f = idI . We write X ≤ Y when there is a (necessarily unique) morphism from X
to Y in DI , and X ≡ Y when X ≤ Y and Y ≤ X.

For each f : I → J in C there is an inverse image functor f∗ : DJ → DI that sends an object X to an
object Y such that f : X .−→ Y is Cartesian. The object Y is unique up to isomorphism in DI : for any Y ′ with
the same property we have Y ≡ Y ′. We will also postulate that f∗ has a left adjoint f∗ : DI → DJ , the direct
image functor. When f∗ exists, we call p a bifibration.

For fibrations to give us logical relations, we also require both categories to be bicartesian closed, and
require p to preserve the bicartesian closed structure. For example, products in D allow us to form logical
relations over a product, and preservation of products implies that this relation has the usual property of
logical relations. We will also want to form conjunctions/intersections of logical relations; these are given by
products in fibres.

Katsumata combines all of these requirements into a single notion.

Definition 4.1 A fibration for logical relations [14] over a bicartesian closed category C is a faithful fibration
p : D → C such that:

• p is a bifibration: each inverse image functor f∗ has a left adjoint f∗;

• D is bicartesian closed, and p strictly preserves the bicartesian closed structure; and

• each fibre DI has all small products, denoted
∧

.

Our only deviation from Katsumata’s definition is to not require fibres to be partial orders, due to our use
of non-strict factorisation systems. Since the fibration is faithful, fibres are preorders.

Recall also the change-of-base construction which allows us to construct new fibrations for logical relations
from existing ones:

Lemma 4.2 (Katsumata [14, Proposition 6]) Let p : D → C be a fibration for logical relations, and let
F : C′ → C be a product-preserving functor. The projection from the pullback F ∗ p of p along F is a fibration
for logical relations on C′.

F ∗D D

C′ C

y
F∗ p p

F

When we choose the product functor F := (×) : C × C → C, we call F ∗D the category of binary logical
p-relations over C.

9



Kammar and McDermott

4.2 Fibrations from factorisation systems

Let (E ,M) be a factorisation system on C. Recall that we viewM as a full subcategory of the arrow category
C→, so that objects are M-morphisms and morphisms are commutative squares. The codomain functor cod :
M → C sends an M-morphism m : X � Y to its codomain Y . Cartesian morphisms for cod are exactly
pullback squares. Given an M-morphism m : X ′ � Y ′ and a morphism f : Y → Y ′, we construct the
Cartesian morphism required in the definition by taking the pullback of m along f :

X X ′

Y Y ′

f∗m
y

m

f

f∗m is necessarily inM due to the diagonal fill-in property. Hence if C has all pullbacks ofM-morphisms then
cod is a fibration. If this is the case then cod is also a bifibration: the left adjoint f∗ maps anM-morphism m
to the M-morphism in the factorisation of f ◦m.

Example 4.3 Consider the (surjection, injection) factorisation for Set. Every injection m : X � Y is equal
to the composition of an inclusion i and an isomorphism. In this case, we have m ≡ i. This fact rephrases that
an injection is, up to isomorphism in the fibre, a subset X ⊆ Y . The direct image functor f∗ of a function
f : Y → Y ′ maps this subset to {f x | x ∈ X} ⊆ Y ′. The inverse image functor f∗ maps a subset X ′ ⊆ Y ′ to
{x | f x ∈ X ′} ⊆ Y .

Example 4.4 Similarly for the (dense, full) factorisation for ωCpo, the full functions are the chain-closed
subsets. Inverse images are the usual inverse images, but direct images are now the ω-chain-closure of the
direct image.

We extend the work of Hughes and Jacobs [7], who give a correspondence between factorisation systems
on categories with pullbacks and certain fibrations. We restrict this correspondence to fibrations for logical
relations.

Definition 4.5 [cf. [7]] Let C be bicartesian closed. A factorisation system (E ,M) over C is a factorisation
system for logical relations when:

• C has all pullbacks of M-morphisms;

• every morphism in M is a monomorphism
(i.e. m ◦ f = m ◦ g ⇒ f = g);

• for every Y ∈ C the fibre MY has small products;

• M is closed under binary coproducts; and

• E is closed under binary products.

The monomorphism requirement implies that cod is faithful. The closure of M under coproducts implies
thatM is bicartesian (it automatically has initial and terminal objects and products). The closure of E under
binary products implies that for m′ : X ′ � Y ′ the canonical morphism X ⇒m′ : X ⇒ X ′ � X ⇒ Y ′ is an
M-morphism, and hence that M has exponentials m ⇒̇m′, which are given by the following pullback:

Z X ⇒X ′

Y ⇒ Y ′ X ⇒ Y ′

m⇒̇m′
y

X⇒m′

m⇒Y ′

Lemma 4.6 Let (E ,M) be a factorisation system over a bicartesian closed category C. The codomain functor
cod :M→ C is a fibration for logical relations iff (E ,M) is a factorisation system for logical relations.

This lemma also has a converse: if a fibration for logical relations is a factorisation fibration [7, Definition
3.1] then the factorisation system induced by Hughes and Jacobs’s correspondence is a factorisation system for
logical relations.

Example 4.7 The factorisation systems (surjection, injection) for Set and (dense, full) for ωCpo are fac-
torisation systems for logical relations. If (E ,M) is a factorisation system for logical relations on C, then
(component-wise E , component-wise M) is a factorisation system for logical relations on [W, C].

10



Kammar and McDermott

4.3 Folklore lifting for algebraic operations

Since our semantics uses monads, we also need to lift monads to the category of logical relations. Let p : D → C
be a faithful fibration, ε be an effect signature in D, and T be a p ε-monad on C, where p ε is the effect signature
with operations op : pX → p Y for (op : X → Y ) ∈ ε. A lifting of T to D is an ε-monad Ṫ on D such that:

• for each X ∈ D we have p (Ṫ X) = T (pX);

• for each f : X → Y we have p (Ṫ f) = T (p f);

• the unit lifts: p (returnṪ ) = returnT ;

• the multiplication lifts: p (µṪ ) = µT ;

• the strength lifts: p (strṪ ) = strT ; and

• each op ∈ ε lifts: p (α̇op) = αop.

Only the object action of Ṫ is a required structure, the other requirements are properties we need to check.
As each logical relations proof involving monads involves a lifting, these occur in abundance, and usually in

an ad-hoc fashion. Two general lifting techniques are >>-lifting [13] and the codensity lifting [16]. We instead
use the free lifting, which is the ε-monad that is initial amongst all ε-liftings. The proof of completeness relies
on initiality. The construction of the free lifting is folklore, and is described for binary relations over Set in
Kammar’s thesis [10]. We describe it for the general case of a fibration for logical relations here.

Let p : D → C be a fibration for logical relations with essentially small fibres, i.e. each fibre has a representing
set of objects up to ≡. For each object X ∈ D define RX as the set of all X ′ in the representing set of DT (pX)
such that:

• The unit respects X ′: returnT : X .−→ X ′.

• For each (op : A → B) ∈ ε the algebraic operation αop respects X ′: αop : B ⇒̇ X ′ .−→ A ⇒̇ X ′, where ⇒̇
denotes exponentials in D.

This definition makes essential use of the bijection between algebraic operations and Kleisli arrows, as the
former localises the closure condition to X ′ alone. The elements of RX can be thought of as candidates for
Ṫ X. We define the free lifting of T to D on objects by Ṫ X B

∧
RX, so that Ṫ X is the least element of RX

with respect to the order ≤ on the fibre. This definition extends uniquely to a lifting of T to D.

Theorem 4.8 Ṫ is a lifting of T to D, and is initial: for all liftings Ṫ ′, the identity lifts to a (necessarily

unique) ε-monad morphism Ṫ → Ṫ ′.

4.4 Completeness

We now return to the language λc and relate the refined semantics we construct at the end of Section 3.2 with
the unrefined semantics. Suppose that the factorisation system we used to construct the refined semantics is a
factorisation system for logical relations that is well-powered, meaning that each object has a representing set
of M-morphisms into it, and let p : LogRel → C × C be the fibration for logical relations constructed from
the codomain fibration cod : M→ C, as in Lemma 4.2. Explicitly, an object of LogRel is a triple (X,Y,m)
where m : Z � X × Y (for some Z) is an M-morphism. The diagonal relations are the objects (X,X, δX),
where δX = 〈id, id〉 : X � X ×X. We further assume that all diagonal relations exist, i.e., the diagonals δX
are in M. Well-poweredness of the factorisation system implies p has essentially small fibres.

Example 4.9 The factorisation systems (surjection, injection) over Set and (dense, full) over ωCpo are well-
powered and have all diagonals. For every factorisation system (E ,M) for C and every small category W,
the factorisation (component-wise E , component-wise M) is well-powered if (E ,M) is well-powered, and has
diagonals if (E ,M) has diagonals.

Example 4.10 Over Set, the factorisation system (iso, any) is not well-powered, and the factorisation system
(any, iso) does not have all diagonals.

Consider any unrefined model together with a refined factorisation model for it. For each ε ⊆ Σ both T
and Tε are ε-monads, so (Tε, T ) is an ε-monad on C × C (and this forms a refined λc model on C × C). By

Theorem 4.8 we can lift (Tε, T ) to get an ε-monad Ṫε on LogRel. Moreover, each monad morphism Tε⊆ε′

induces an ε-monad morphism Ṫε → Ṫε′ , since Ṫε is initial and (Tε⊆ε′)
∗
(Ṫ ε′X) .−→ Ṫ ε′X. If we take the

interpretations LogRel⟦b⟧ of base types b to be diagonal relations
(⟦b⟧, ⟦b⟧, δ⟦b⟧), we need to interpret the

constants to form a refined λc model on LogRel. By the fibration’s faithfulness, this interpretation is merely a
property, and not structure we need to provide. Using an inductive argument, ground types G denote diagonal
relations, and if p (LogRel ⟦c⟧) is the interpretation of the constant c in C × C then for all well-typed terms
Γ `ε M : A we have:

p (LogRel ⟦Γ `ε M : A⟧) = (⟦Γ `ε M : A⟧, ⟦Γ `M : A⟧)
11



Kammar and McDermott

We use LogRel to compare the refined model we constructed with the original unrefined model. First:

Lemma 4.11 Suppose that the free ε-monad Sε is given by the transfinite construction from §2.3. For each
morphism (f1, f2) : (X,X)→ (Tε Y , T Y ) in C × C, if (f1, f2) : (X,X, δX) .−→ Ṫε (Y, Y, δY ) then f2 = mm

ε ◦ f1.

We can now show that the refined semantics is complete for equational reasoning.

Theorem 4.12 (Completeness) Under the combined assumptions of this subsection, for all contexts Γ con-
taining only ground types and terms Γ `ε M : G and Γ `ε N : G of ground type,

⟦Γ `M : G⟧ = ⟦Γ ` N : G⟧ ⇐⇒ ⟦Γ `ε M : G⟧ = ⟦Γ `ε N : G⟧

Proof. Noting that ground types are interpreted as diagonal relations, we apply Lemma 4.11 to both
LogRel ⟦M⟧ and LogRel ⟦N⟧ to show that

⟦Γ `M : G⟧ = mm
ε ◦ ⟦Γ `ε M : G⟧ ⟦Γ ` N : G⟧ = mm

ε ◦ ⟦Γ `ε N : G⟧
Now the result follows from the fact that every M-morphism is a monomorphism. 2

5 Examples

Before we conclude, we apply the factorisation construction to several examples.

Example 5.1 Continuing the global state example from §3.3, we have the full factorisation:

T∅ = Id T{get} = S⇒ (−) T{set} = (1 + Z)L × (−) T{get,set} = T

By the completeness of the refined semantics from §4.4, we can apply the equation from §3.3 to programs of
ground type in ground contexts without changing their denotations in the unrefined semantics.

Example 5.2 If instead of T we use the monad T ′ = (S⇒ (−)⇒R)⇒ S⇒ R, which combines global state
with continuations (so that the language can include constants such as call/cc), then we get the same factorisa-
tion, assuming |R| > 1. Hence we can also verify the caching transformation in this situation. The construction
in Kammar’s thesis [10] does not allow this factorisation, as it is restricted to Lawvere theories, i.e., ranked
monads, and T ′ is not ranked. Note that, as call/cc is not algebraic, we cannot interpret call/cc in the refined
semantics, so cannot validate transformations on subprograms that use continuations.

Example 5.3 Using the (dense, full) factorisation of ωCpo, we can re-cast Kammar and Plotkin’s [11] vali-
dation of effect-dependent optimisations.

Example 5.4 Let value be a base type for values (with associated constants). Consider λc with a base type
ref of references, and the set Σ = {lookup : ref → value,update : ref × value → 1, alloc : value → ref} of
operations, so that we can read from and write to references, and allocate new references. Let I be the category
of finite ordinals and injections between them. Plotkin and Power [27] interpret these operations the functor
category [I,Set] as follows. Let V be a nonempty finite set of values with interpretation for the value constants.
Then we interpret value as the constantly-V functor, and ref as the Yoneda embedding ⟦ref⟧ = I(1,−), so that
⟦ref⟧ n has n elements. The local state monad is defined using a coend:

T X n B Vn⇒
∫ m∈I

I(n,m)× Vm ×Xm

A computation is given an initial state in Vn, and returns an injection that describes how the original n
references are distributed over the m references (so that n ≤ m), a new state in Vm, and a result in Xm.

The category [I,Set] has a (pointwise surjection, pointwise injection) factorisation system. For each subset
ε ∈ Σ, since V is finite, we can show that the transfinite sequence Sα converges at ℵ0. We can therefore show
by induction on α that, for example, there are component-wise surjections from the corresponding free monads
into the following functors:

T{alloc}X n B

∫ m∈I

I(n,m)× Vm−n ×Xm T{lookup,update}X n B Vn⇒ Vn ×Xn

Calculation shows that there are pointwise injections from these into T . Theorem 2.5 (and the uniqueness of
factorisations) implies they are the monads that result from factorisation. For an example of reasoning using

12



Kammar and McDermott

this factorisation, note that there are two sequencing morphisms T{alloc}X × T{alloc} Y → T{alloc} (X × Y ),
one that does the left computation first and one that does right first. It is easy to check that these are equal,
i.e., T{alloc} is commutative, and hence we can validate a transformation that reorders computations that only
allocate.

6 Conclusion

We have presented a factorisation theorem for cutting down a monad into sub-monads based on a factorisation
system. We showed how this construction gives uniform semantics for Gifford-style type-and-effect systems.
Synthesising Hughes and Jacobs’s characterisation of fibrations arising from factorisation systems and Kat-
sumata’s axiomatisation of fibrations for logical relations, we provide a general proof that the factorisation
construction is sound and complete for effect-dependent equational reasoning.

We would like to generalise the completeness theorem to programs of higher-order types, and not just
ground types. Reynolds [30] relates direct and continuation semantics by defining domain-theoretic partial
maps between the two semantics, and proves such a theorem. Felleisen and Cartwright [5] provide an analogous
construction and proof for free effects and their handlers [28,1], but their semantics does not involve monads.
Well-powered factorisation systems for logical relations induce categories of partial maps via Fiore’s axiomatic
domain theory [6]. The axiomatic development is particularly appealing because factorisation systems of
interest, such as the (dense, full) factorisation of ωCpo do not admit a representation using a lifting monad.

We want to relate the free lifting to other lifting techniques, most notably >>-, and codensity-, lifting.
We would also like to relate Benton et al.’s [2] relational models to our construction. We want to apply this
construction to more sophisticated computational effects, such as dynamic memory allocation [9]. Another
application area to the free lifting is relational parametricity with effects — we have used it as a semantic
precursor to the more syntactic work on analysing the value restriction [12], and we hope it applies more
widely. Finally, there is still a wide gap between Gifford-style type-and-effect systems and the full generality
of graded monads. We hope our account will carry over to such settings.
Acknowledgements. This work has been supported by an Engineering and Physical Sciences Research Coun-
cil (EPSRC) studentship, EPSRC grants EP/N007387/1 ‘Quantum computation as a programming language’,
EPSRC Leadership Fellowship EP/H005633/1 ‘Semantic Foundations for Real-World Systems’, Institute for
Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP)
No. R0190-16-2011 ‘Development of Vulnerability Discovery Technologies for IoT Software Security’, a Bal-
liol College Oxford Career Development Fellowship, European Research Council Grant ‘Events, Causality and
Symmetry — the next generation semantics’, and Isaac Newton Trust grant ‘algebraic theories, computational
effects, and concurrency’. We would like to thank Marcelo Fiore, Mathieu Huot, Justus Matthiesen, Ian Orton,
and Philip Saville for fruitful discussions and suggestions.

References

[1] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of Logical and Algebraic
Methods in Programming, 84(1):108 – 123, 2015. Special Issue: The 23rd Nordic Workshop on Programming Theory (NWPT
2011) Special Issue: Domains X, International workshop on Domain Theory and applications, Swansea, 5-7 September, 2011.

[2] Nick Benton, Martin Hofmann, and Vivek Nigam. Effect-dependent transformations for concurrent programs. Science of
Computer Programming, 155:27 – 51, 2018. Selected and Extended papers from the International Symposium on Principles
and Practice of Declarative Programming 2016.

[3] Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java Bytecodes. In Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming, ICFP ’98, pages 129–140, New York, NY, USA, 1998.
ACM.

[4] Aldridge K. Bousfield. Constructions of factorization systems in categories. Journal of Pure and Applied Algebra, 9(2):207–
220, 1977.

[5] Robert Cartwright and Matthias Felleisen. Extensible denotational language specifications, pages 244–272. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1994.

[6] Marcelo Pablo Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Distinguished Dissertations in Computer
Science. Cambridge University Press, 1996.

[7] Jesse Hughes and Bart Jacobs. Factorization systems and fibrations. Electronic Notes in Theoretical Computer Science,
69:156 – 182, 2003.

[8] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics. North
Holland, Amsterdam, 1999.

[9] O. Kammar, P. B. Levy, S. K. Moss, and S. Staton. A monad for full ground reference cells. In 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–12, June 2017.

13



Kammar and McDermott

[10] Ohad Kammar. Algebraic theory of type-and-effect systems. PhD thesis, University of Edinburgh, UK, 2014.

[11] Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for effect-dependent optimisations. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’12, pages 349–360, New
York, NY, USA, 2012. ACM.

[12] Ohad Kammar and Matija Pretnar. No value restriction is needed for algebraic effects and handlers. Journal of Functional
Programming, 27:e7, 2017.

[13] Shin-ya Katsumata. A semantic formulation of >>-lifting and logical predicates for computational metalanguage. In Luke
Ong, editor, Computer Science Logic, pages 87–102, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[14] Shin-ya Katsumata. Relating computational effects by >>-lifting. Inf. Comput., 222:228–246, 2013.

[15] Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. SIGPLAN Not., 49(1):633–645, 2014.

[16] Shin-ya Katsumata and Tetsuya Sato. Codensity liftings of monads. In CALCO, 2015.

[17] G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and
so on. Bulletin of the Australian Mathematical Society, 22(1):1–83, 1980.

[18] G.M. Kelly. Two addenda to the author’s ‘transfinite constructions’. Bulletin of the Australian Mathematical Society,
26(2):221–237, 1982.

[19] Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120, 1972.

[20] Daniel Lehmann and Ana Pasztor. Epis need not be dense. Theoretical Computer Science, 17(2):151 – 161, 1982.

[21] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’88, pages 47–57, New York, NY, USA, 1988. ACM.

[22] Saunders Mac Lane. Categories for the Working Mathematician (Graduate Texts in Mathematics). Springer, 2nd edition,
1998.

[23] Francisco Marmolejo and Richard J. Wood. Monads as extension systems — no iteration is necessary. Theory and Applications
of Categories, 24(4):84–113, 2010.

[24] José Meseguer. Completions, factorizations and colimits for ω-posets. In Mathematical Logic in Computer Science,
Salgotarjan, 1978, Colloquia Mathematica Societatis Janos Bolyai, volume 26, pages 509–545. North Holland, 1981.

[25] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[26] Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied Categorical Structures, 11(1):69–94, 2003.

[27] Gordon D. Plotkin and John Power. Notions of computation determine monads. In Proceedings of the 5th International
Conference on Foundations of Software Science and Computation Structures, pages 342–356, London, UK, 2002. Springer-
Verlag.

[28] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Proceedings of the 18th European Symposium on
Programming Languages and Systems: Held As Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, ESOP ’09, pages 80–94. Springer-Verlag, Berlin, Heidelberg, 2009.

[29] A John Power. Enriched Lawvere theories. Theory and Applications of Categories, 6(7):83–93, 1999.

[30] John C. Reynolds. On the relation between direct and continuation semantics. In Jacques Loeckx, editor, Automata,
Languages and Programming, pages 141–156, Berlin, Heidelberg, 1974. Springer.

[31] Andrew P. Tolmach. Optimizing ML using a hierarchy of monadic types. In Types in Compilation, pages 97–115, 1998.

[32] Philip Wadler. The marriage of effects and monads. SIGPLAN Not., 34(1):63–74, 1998.

14


	Introduction
	Factorising monads
	Preliminaries and terminology
	The factorisation theorems
	Free monads

	Type-and-effect systems
	Syntax
	Semantics
	Example reasoning

	Monadic lifting
	Preliminaries
	Fibrations from factorisation systems
	Folklore lifting for algebraic operations
	Completeness

	Examples
	Conclusion
	References

